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The rate of a diffusion-controlled reaction with a buried binding site is smaller than the rate for the
same site on the surface. We study the slowdown of the reaction rate when the site is hidden in a
pore that connects two bulk media. On the assumption that the pore is cylindrical we derive an
expression for the Laplace transform of the rate coefficient from which we infer the long-time limit
of the reaction rate. This provides information on how the reaction rate depends on the channel
radius, the location of the site, and the diffusion constant in the pore, which is allowed to differ from
that in the bulk. The validity of approximations was checked by simulations that indicated excellent
agreement between the analytical and and numerical results206 American Institute of
Physics. [DOI: 10.1063/1.1533061

I. INTRODUCTION In this paper we develop a theory of diffusion-controlled
reactions when a reaction site is hidden in a membrane chan-
Diffusion-controlled reactions of solutes with a reaction nel. A simple model of such a reaction is one in which it is
site hidden in a protein membrane channel or protein cavityisssumed that the reaction site is located in a cylindrical chan-
underlie many basic biological processes. A set of well-nel of radiusa, in the geometry shown in Fig. 1. The reaction
studied examples is provided by ligand activation of waternwill be said to occur when the first particle reaches the reac-
soluble and integral membrane proteins in intra- and extrative site. Particles diffuse in the bulk and within the channel
cell signal transduction, where structural studies often reveakith the diffusion constant®, and D,, respectively. Ini-
clefts or pockets for ligand-binding sités? Noncompetitive  tially the concentration of particles in the bulk is constant
inhibition of ion channels in synaptic transmission is anotherand equal tac, and there are no particles in the channel. To
example in which entrance into the pore and diffusion in thenitiate the reaction process the two openings of the channel
pore are essential steps of the inhibition reactidmpor-  are opened at=0, permitting the particles to move into the
tantly, noncompetitive inhibitors that block open ion chan-cylinder.
neels are considered to be promising neuroprotective agents |t has been shown that, to a good approximation, diffu-
against glutamate excitoxicity in a number of neurodegenerasion in the channel can be described as being
tive disorders.™’ one-dimensional~ ! It will be assumed, in the framework of
Diffusion to a hidden reaction site is able to slow down this one-dimensional description, that the reaction site can be
the binding reaction by many orders of magnitude. This ismodelled as a perfectly absorbing point. The survival prob-
one of the conclusions of a recent single-molecule study o&bility of the site is the probability that the site has not been
the translocation of antibiotics through a bacterial porin,reached by particles entering the channel either from the left
OmpF® Experimental results indicate that the on-rate ofor right (Fig. 1). Since diffusing particles cannot cross the
ampicillin binding to a constellation of charges in the con-site, the survival probability is a product of two survival
striction zone of the OmpF pore is about %.80* (M  probabilities, found by solving an auxiliary problem. In this
-s)~ 1. This represents a reduction of several orders of magproblem a perfectly absorbing site is located at the bottom of
nitude in the on-rate as compared to the rate expected for @ cylinder of radiusa and of lengthL. The study of this
binding site exposed on the surface. Though many factorgroblem is the main focus of the present paper. We derive an
may be responsible for this dramatic reduction, the diffusionanalytical expression for the reaction rate as a functioh of
step to the reaction site hidden in the center of the channel isnda as well as diffusion constants in the bulk and inside the
a likely candidate. cylinder. WhenL=0 the problem reduces to a well-known
one in which an absorbing disk is placed on a reflecting wall.
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solutions at the entrance to the cylindrical pore. This pro-
gram cannot be carried out due to its mathematical complex-
ity. However, an approximate, but quite accurate, technique
has recently been found to handle such problémke re-
sults of that reference show that the three-dimensional mo-
tion inside a cylinder in contact with a bulk can be treated as
being one-dimensional diffusion, provided that the proper
radiation boundary condition is imposed at the entrance to
the cylinder. Results of extensive simulations using the ac-
curate geometry, i.e., with a three-dimensional cylindrical
X channel in contact with the bulk were compared to those
derived on the basis of the one-dimensional approximation in
Refs. 9 and 11. Excellent agreement was found between the
theoretically predicted results and those found in simulation
for all values of the ratioL/a that determine the channel
geometry.
Since diffusion in the channel can be described as one
dimensional, the particle density at timep(x,t), satisfies

2

i il 0 L 2.2
- = —, O0<X<Z .
¥ L, subject to the initial conditiop(x,0)=0. The existence of a
FIG. 1. Schematic diagram of the channel with a binding site. The site i2iNding site ak=L is translated into the absorbing boundary
located at distances andl, from the channel entrances, as shown. condition p(L,0)=0. It has been shown in Ref. 9 that the

pointx=0, as viewed from the cylinder, can be regarded as
. ] . . a partially absorbing boundary. To write the boundary condi-
The rate constant for a buried reaction site was first congion atx=0 we introduce the flux of particles that enter the

sidered by Samson and Deutch who studied ligand binding t@yjinder from the bulk at time, J,(t). The boundary condi-
a reaction site buried inside an enzyme or protéiising a  tion can then be expressed as

sophisticated but approximate analysis they derived an ana-

lytical expression for the rate constant in a spherical geom- ap(x,t)
etry in which a binding site is located at a specified depth in Den IX
an otherwise reflecting sphere. In this paper we consider a

simpler geometry allowing us to solve the problem by el-where the rate constart characterizes the efficiency of es-
ementary means. These enable us to find not only the Steaddape from the cylinder of a particle that approaches the
state rate constant but also the time-dependent rate coeffioundary, and has been shown td be
cient. The relation between the Samson—Deutch model and

the present one is discussed in Sec. IV after we develop a 4Dy

theory for our model in the following section and compare = 7a °

our theoretical predictions with simulation results in Sec. IIl.
The functionJy(t) in Eq. (2.9 is the flux of particles im-

Il. THEORY pinging on a disk of radiua on an otherwise planar reflect-
. » . . ing wall. A boundary condition more accurate than Ej3)
The survival probabilityS, (t), i.e., the probability that can be shown to be non-Markovidibut reduces to Eq2.3
no particle has reached the reactive site at the bottom of thgn time scales larger thaa?/D,, . At such timesJ,(t) can
cylinder by timet, is given by be set equal to its stationary valueDdac. In our later
t analysis we will neglect details of the kinetics occuring on
S (t)=ex _CJOkL(f)df

=kp(0t) + I (1), (2.3
x=0

(2.9

; (2D times of the order 082/D,,.
The rate coefficient is expressed in termspék,t) by

whereck, (t) is a time-dependent flux of particles through

the reactive site at timé The object of our analysis is to ~ Den dp(x,t)

determinek (t) as a function of the parameteasand L as k ()=~ c IX o 29

well as the two diffusion constanB¥, andD, . In the final =t

section we use Ed2.1) to express the survival probability of To calculatek, (t) we consider the behavior of a particle that

the binding site in the channel where the site can be reacheshters the cylinder d@t=0 and calculate the flux that escapes

by diffusing particles that enter the channel through either othrough the reactive site at=L due to this particle. The

the two ends. motion inside the cylinder is described by a propagator
To find k_(t) one has to solve the problem in three di- G(x,t|0) which satisfies the diffusion equation in Eg.2)

mensions in the cylinder and in the bulk and match the twdogether with the boundary conditio®(L,t|0)=0. How-
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ever the initial condition is now changed tG(x,0/0)
=§(x) and the boundary condition in Eq2.3) is also
changed to

dG(x,t]0)

e ox

=kG(01]0).
x=0

The flux escaping through the reactive site, denoted(b;
is given by

(2.6

dG(x,t]0)
f()=—Deon——| - 27
x=L
Then the rate coefficient can be expressed as
t
kL(t)=4DbafOf(§)d§. (2.9

The analysis is best presented in terms of Laplace trans-

forms. The Laplace transform & (t) is
RL(s)zf e Sk (t)dt
0

f(s
=4DbaQ=
s s

—4D,Dga dG(x,s/0)
ax

(2.9
The equation satisfied b@(x,t|0) can be solved by means

This leads to the following representationiof(s):
~ 4Dba

kL(S): KL T .
(L?/Dgy) | o costior) + 5—sin(Jor)
ch J

(2.11

It follows from this that whenL=0 the rate coefficient is
4Dya as in Refs. 12—14. The slow down of the reaction rate
due to the fact that. #0 is illustrated in Fig. 2 forDy
=D ., =D. The curves were obtained by numerically invert-
ing k_(s)/s using the expression fok (s) given in Eq.
(2.11). The numerical inversion was performed by the pro-
gram ScientistMicroMath Scientific Software, 1995vhich
uses two different methods to perform the inversion. Both of
these produced the same results.

The long-time limit,k (=), is found by passing to the
limit c—0 in Eq.(2.11). This yields the expression

" 4Dpa 4Dpa 01

o0 )= =

L(%) 1. kL 1. AD,L (212
Dch 7TDcha

which obviously depends both dh, andD,. Initially, the
rate coefficient is equal to zero since no particle is found in
the cylinder. The short-time behavior can be determined by
passing to the limitr—c in Eq. (2.11). This leads to the

of Laplace transforms. It is convenient to introduce a dimen-approximation

sionless combinationy=L2s/D, . The Laplace transform
of G(x,t|0) is found to be

sinr{(l—é) Jo
(Den /L)[ Vo coshiyo) + « sinh( @)](’2

G(x,s/0)=

.10

(2.13

K, (t)~16D \/DC“t L
L(t)=~= pa L2 ex 4Dt/

A solution fork, (t) for all values oft and for arbitrary val-

ues of the parameters can be found by numerically inverting
k().
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When the cylinder is long and narrow, in the sense that Figure 4 is a plot of the rati& («)/4Dya as a function
L>aD .,/Dy,, an approximate solution fdt (t), valid for ~ of L/a, which is compared to the theoretical dependence
all times, can be found. This solution is given in Eq.(2.12. This dependence is indicated in Fig. 4 by

w 5 2 the solid line, while the crosses correspond to the simulation
»  [4mDep (n+1/2)°L
k (t)=a TZ exg ———=——F—
n=0

} (2.14 results. There is close agreement between the two.
Dcht . .
As might be anticipated thik, (t) depends only on proper-

For the dependence &f () on the radius of the cylin-
der, the theory predictxf. Eq.(2.12] a transition from the

ties of the cylinder and there is no effect of diffusion in the

bulk on it. In the long-time limitk (t) takes the form

linear behaviork, («)=4Dya whenL<a to quadratic be-
havior given in Eq.(2.15 for long cylinders,a<L. This
transition is illustrated by the curves shown in the inset in
k() ~mDcpa®/L (2.19  Fig. 5 for cylinders withL=0,0.1, and 1. A comparison of
which is proportional t@? and not toa as is the case when the theoretical prediction and numerical results is also shown

L=0. Using the dimensionless time=D,t/L2 we can in Fig. 5 for the cylinder withL. =1 anda=0.02, 0.03, 0.04,
write and 0.05. Again, there is excellent agreement between theory

and the results of simulation.
k() 2 < 4 (n+1/2)T
—_—= exg ——|. 2.1
) T : (210

A plot of this ratio is shown in Fig. 3.

IV. DISCUSSION

It is interesting to compare our result for the plateau
value of the rate constark, (), in Eq.(2.12 with the rate
lll. SIMULATION RESULTS constant derived by Samson and Deuttfor their model of

. : : : . diffusion-limited ligand binding to a reaction site buried in-
Brownian dynamics simulations were run in a real three-

dimensional geometry to check the accuracy of the theorSIde of an enzyme or protein as shown in Fig. 6. This model

outlined in the last section. The diffusion constants in the¥educes to ours With) 4= Dy, =D in the limit R— ¢ at fixed

. . . . . values of the parametessandL (Fig. 6). It is convenient to
cylinder and in the bulk were set equal in our S'mmatlons’consider 1%, (=) which can be written as
D,=D ¢,=D. A further discussion of the simulations is to L
be found in the Appendix. We found very good agreement 1 1 L 1 L
between the t.heore.tically predictgd vglueskp@oo) and that k(@) Kau + 2D “zap t D
obtained by simulation. The relative discrepancy between the
theory and simulations was less than 3 percent for all valuewherekgs =4aD is the rate constant for a perfectly absorb-
of aandL used for simulations. A more detailed set of resultsing disk on an infinite reflecting plane, derived by Hilland
are shown in the graphs in Figs. 4 and 5. Berg and Purceft®

4.0
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FIG. 4. The ratio of the plateau value
of the rate coefficient for the binding
site hidden in the cylinder of length,

k (=), to the rate constant for the
same site exposed on the reflecting
surface, Da. The plots are shown as
a function ofL/a. The solid curve is
calculated from Eq.(2.12 with D,
=D.,,=D. The crosses represent
simulated data.

0.0 - L
L/a

The inverse of the rate constant derived by Samson anih the notation used in Fig. 6. Herkgp (69,0R) is the SD
Deutch(SD) in Ref. 17 can be written expression for the rate constant for a circular absorbing spot
1 1 on the surface of an otherwise reflecting sphere of raRius

= Itis
ksp(fo,LIR)  ksp(60,0/R)

L 27DR(1—coséby)

* 2mR(R—L)(1—cosé,) (4.2 kso(00,01R) = 7(coséy) “-3

0.004 —————————————————1———1—————
04

FIG. 5. Behavior of the plateau value
of the rate coefficientk («), as a
function of the cylinder radius for
different values ol. The dependence
is linear when the binding site is ex-
posed on the reflecting surface. When
the site is hidden in the cylinder the
dependence is initially quadratic, be-
coming linear when the radius of the
cylinder is larger than the cylinder
length, as shown in the inset. The
numbers near the curves indicate the
cylinder length. Both the rate constant
and the cylinder length and radius are
expressed in dimensionless units. The
curves are calculated from E¢R.12
with Dy=D¢,=1/2 in dimensionless
units. The crosses in the main part of
the figure were obtained from simu-
lated data for a cylinder with=1 and
the corresponding theoretical curve is
drawn as a solid line.
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PN 1 "
i ksp(fo=a/R,L|R) Kgsksp a2D
1
1

8, 1 L
= 4.7

= ——+ .
7aD 7Ta2D

A comparison of this formula and E¢4.1) indicates that the
difference between the two rate constants is due to the dif-
ference betweek 45 sp and the exact value ddyq as de-
rived by Hill,*2 and Berg and Purcel? This difference mani-
fests itself only for very short cylinders, i.d.<a. In the
interesting case of the long cylindér>a, both approaches
lead to the steady-state rate constaafD/L.
Our analysis has the advantage of leading not only to the
long-time plateau value of the rate coefficient, but also to the
FIG. 6. A s_ketch of the modgl ana_lyzed by_Samson and Deutch, consisting_amace transform of the time-dependent rate coefficient. We
of a reflecting sphere of radiu® with a conical channel of length that . . . . .
leads to the binding site indicated by the thick line. The channel opening igvere able to invert thI_S tranSform_m the mOSt_ interesting _ca_lse
defined by the angl#, and the arc length is equal & of a long, narrow cylinder, allowing us to give the explicit
formula fork, (t) in Eqg. (2.14). This is possible because we
have analyzed a simpler geometry than in the SD model.
in which z(cos#) is defined by V. A CONCLUDING REMARK
Two main results of the present paper are the expressions
for the Laplace transform of the rate coefficient given in Eq.
. (2.11) and for the plateau valug (=) given in Eq.(2.12. It
> P-1(cosfy) — P, 1(cos6by) 4.4 allows one to analyze the dependence of the rate constant
= |+1 ' ' and the associated survival probability on the parameters
and L of the cylinder, and the diffusion constarig,, and
wherePy(cos#p) is thelth order Legendre polynomial. D, . When the form oS, (t) is known the survival probabil-

WhenRis large anda is fixed so thatdpy=a/R the rate ity of the perfectly binding site in the channel, in the geom-
constant in Eq(4.3) can be approximated by the rate con- etry of Fig. 1, can be expressed as

stant for an absorbing disk on an infinite reflecting plane

derived by Shoup, Lipari, and SzalfbThey applied the SD S (1)S. (1) =ex —cjt[k| (&)+k(£)]dE) . (5.1)
approach to this problem and found 1 2 o 1! 2

1
n(cosby) = > 1—cosé,

Kgisk.sp= maD. (4.5  This representation shows how the survival probability de-

pends on the location of the site inside of the channel.
One can find this result from Eqgt.3) and(4.4) by making

use of the sum ACKNOWLEDGMENT
i P,_1(cosfy) — Py, 1(cosby) The authors are grateful to Dr. Attila Szabo for numerous
“ [+1 very helpful discussions.
~2[sin{ 3] o8| i 245 | B s PETALS
P 0 The geometric configuration used in our simulations is
—Sinz(g) 1-In Sin(z” ] (4.6 shown in Fig. 7. A circular cylinder of length and radius

equal toa is attached to a wall of a unit cube whose sides are
that can be derived using some relations from Ref. 19. Theerfectly reflecting as are the sides of the cylinder, except for
rate constant in Eq(4.5 is smaller than the exadty its dead end, which is absorbing. Reflections from the walls
=4aD as must be the case becalggy sp is derived using were handled by returning the diffusing particle to the posi-
an absorbing boundary conditigne., requiring the ligand tion it had just prior to hitting the wall. A comparison of
concentration to vanigtonly at one point at the center of the results obtained by this simplified method, which saves a
disk. The exacky, , on the other hand, is derived with an considerable amount of computer time, and those by a more
absorbing boundary condition on the entire disk surface. accurate one were only slightly different.

The second term on the right-hand side of Eg2) takes In the simulations the cylinder length varied from 0 to 5,
the formL/(7a?D) in the largeR limit and with §,=a/R. while the radius of the cylinder varied from 0.02 to 0.05. A
This coincides with the second term in E4.1). In the limits ~ given particle’s motion both in the box and within the cylin-
just mentioned we have der was determined by sampling from a Gaussian process. If
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sults for cylinders withL=2-5 were obtained using 10
random walkers due to the very long running time for a
single random walker.
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